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Abstract

Implicit feedback, such as user clicks, although abundant in online information ser-
vice systems, does not provide substantial evidence on users’ evaluation of system’s
output. Without proper modeling, such incomplete supervision inevitably misleads
model estimation, especially in a bandit learning setting where the feedback is ac-
quired on the fly. In this work, we perform contextual bandit learning with implicit
feedback by modeling the feedback as a composition of user result examination
and relevance judgment. Since users’ examination behavior is unobserved, we
introduce latent variables to model it. We perform Thompson sampling on top
of variational Bayesian inference for arm selection and model update. Our upper
regret bound analysis of the proposed algorithm proves its feasibility of learning
from implicit feedback in a bandit setting; and extensive empirical evaluations on
click logs collected from a major MOOC platform further demonstrate its learning
effectiveness in practice.

1 Introduction

Contextual bandit algorithms [4, 20, 19] provide modern information service systems an effective
solution to adaptively find good mappings between available items and users. This family of
algorithms sequentially select items to serve users using side information about user and item, while
adapting their selection strategies based on the immediate user feedback to maximize users’ long-term
satisfaction. They have been popularly deployed in practical systems for content recommendation
[20, 5, 26] and display advertising [6, 22].

However, the most dominant form of user feedback in such systems is implicit feedback, such as
clicks, which is known to be biased and incomplete about users’ evaluation of system’s output
[16, 11]. For example, a user skips a recommended item might not be because he/she does not like
the item, but he/she just does not examine that display position, i.e., position bias [13]. Unfortunately,
a common practice in contextual bandit applications simply treats no click as a form of negative
feedback [20, 25, 6]. This introduces inconsistency to model update, since the skipped items might
not be truly irrelevant, and it inevitably leads to suboptimal outputs of bandit algorithms over time.

In this work, we focus on learning contextual bandits with user click feedback, and model such
implicit feedback as a composition of user result examination and relevance judgment. Examination
hypothesis [8], which is a fundamental assumption in click modeling, postulates that a user clicks on
a system’s returned result if and only if that result has been examined by the user and it is relevant to
the user’s information need at the moment. Because a user’s examination behavior is unobserved,
we model it as a latent variable, and realize the examination hypothesis in a probabilistic model.
We define the conditional probabilities of result examination and relevance judgment via logistic
functions over the corresponding contextual features. To perform model update, we take a variational
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Bayesian approach to develop a closed form approximation to the posterior distribution of model
parameters on the fly. This approximation also paves the way for an efficient Thompson sampling
strategy for arm selection in bandit learning. Our finite time analysis proves that, despite the increased
complexity in parameter estimation introduced by the latent variables, our Thompson sampling
policy based on the true posterior is guaranteed to achieve a sub-linear Bayesian regret with a high
probability. We also demonstrate that the regret of Thompson sampling based on the approximated
posterior is well-bounded. In addition, we prove that when one fails to model result examination in
click feedback, a linearly increasing regret is possible, as the model cannot differentiate examination
driven skips from relevance driven skips in the negative feedback.

We tested the algorithm in XuetangX1, a major Massive Open Online Course (MOOC) platform in
China, for personalized education. To personalize students’ learning experience on this platform, we
recommend quiz-like questions in a form of banners on top of the lecture videos when students are
watching the videos. The algorithm needs to decide where in a video to display which question to
a target student. If the student feels the displayed question is helpful for him/her to understand the
lecture content, he/she could click on the banner to read the answer and more related online content
about the question. Therefore, our goal is to maximize the click through rate (CTR) on the selected
questions. There are several properties of this application that amplifies the bias and incompleteness
of click feedback. First, based on the consideration of user experience, to minimize the risk of
annoying any student, the displayed time of a banner is limited to a few seconds. Second, as this
feature is newly introduced to the platform, many users might not realize that they can click on the
question to read more related content about it. As a result, no click on a question does not necessarily
indicate its irrelevance. We tested the algorithm in this application in a four-month period, where a
total of 69 questions are manually compiled for the algorithm to select over 20 major videos with
more than 100 thousands student video watching sessions. Based on the unbiased offline evaluation
policy [21], our algorithm achieved a 8.9% CTR lift compared to standard contextual bandits [20, 9]
which do not model users’ examination behavior.

2 Related Works

As having been extensively studied in click modeling of user search results [7], various factors affect
users’ click decisions; and among them result examination plays a central role [13, 8]. Unfortunately,
most applications of bandit algorithms simply treat user clicks as explicit feedback for model update
[20, 25, 6, 26], where no click on a selected result is considered as negative feedback. This inevitably
leads to inaccurate model update and sub-optimal arm selection. There is a line of related research
that develops click model based bandit algorithms for learning to rank problems. For example, by
assuming that skipped documents are less attractive than later clicked ones in a ranked list, Kveton
et al. [17] developed a cascading bandit model to learn from both clicks and skips in search results.
To enable learning from multiple clicks in the same result ranking list, they adopted the dependent
click model [10] to infer user satisfaction after a sequence of clicks [14], and later further extended it
to broader types of click models [27]. However, such algorithms aim at estimating the best ranking
of results in a per-query basis, without specifying any specific ranking function. Hence, it is hard
for them to generalize to unseen queries. This directly limits their application scenario in practice.
The solution developed in Lagrée et al. [18] is the closest to ours, which exploits bias in reward
distribution induced by different examination probabilities at different display positions. Yet they
assumed the examination probability only depends on position, while we allow any reasonable feature
to be a determinant. Besides, they postulated that the probability of examination at each position is
either heuristically set or empirically estimated, and henceforth fixed; while we estimate it on the fly
from the observations obtained by interacting with users.

Another line of related research is bandit learning with latent variables. Maillard and Mannor studied
the problem of latent bandit [23], which assumes reward distributions are clustered and the clusters
are determined by some latent variables. They only studied the problem in a context-free setting, and
a very weak performance guarantee is provided when the reward distribution is unknown in those
clusters. Kawale et al. developed a Thompson sampling scheme for online matrix-factorization [15].
Latent features are extracted via an online low-rank matrix completion based on samples selected
from Thompson sampling on the fly. Due to the ad-hoc combination of factorization method and
bandit method, little theoretical analysis was provided. Wang et al. studied the problem of latent
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feature learning for contextual bandits [25]. They extended arms’ context vectors with latent features
under a linear reward structure, and applied the upper confidence bound principle over coordinate
descent to iteratively estimate the hidden features and model parameters. The linear reward structure
prohibits it from recognizing the nonlinear dependency between result examination and relevance
judgment in click feedback. And their regret analysis depends heavily on the initialization of the
algorithm, which could be hard to achieve in practice.

3 Problem Setup

We consider a contextual bandit problem with finite, but possibly large, number of arms. Denote
the arm set as A. At each trial t = 1, ..., T , the learner observes a subset of candidate arms A

t

with
A

t

⇢ A, where each arm a is associated with a context vector xa summarizing the side information
about the arm. Once an arm a

t

2 A
t

is chosen according to some policy ⇡, corresponding implicit
binary feedback C

a

t

, e.g., user click, will be given to the learner as the reward. The learner’s goal is
to adjust its arm selection strategy to maximize its cumulative reward over time. What makes this
problem unique and challenging is that C

a

t

does not truly reflect users’ evaluation of the selected
arm a

t

. Based on the examination hypothesis [13, 8], when C
a

t

= 1, the chosen a
t

must be relevant
to the user’s information need at time t; but when C

a

t

= 0, a
t

might be relevant but the user just does
not examine it. Unfortunately, the result examination condition is unobserved to the learner.

We model a user’s result examination via a binary latent variable E
a

t

and assume that the context
vector xa

t

of arm a can be decomposed into (x

a

C,t

,xa

E,t

), where the dimension of xa

C,t

and x

a

E,t

are
d
C

and d
E

respectively. Accordingly, users’ result examination and relevance judgment decisions
are assumed to be governed by a conjecture of (xa

C,t

,xa

E,t

) and the corresponding bandit parameter
✓⇤

= (✓⇤
C

,✓⇤
E

). In the rest of this paper, when no ambiguity is introduced, we drop the index a to
simplify the notations. As a result, we make the following generative assumption about an observed
click C

t

on arm a
t

,

P(C
t

= 1|E
t

= 0,x
C,t

) = 0

P(C
t

= 1|E
t

= 1,x
C,t

) = ⇢(xT
C,t

✓⇤
C

)

P(E
t

= 1|x
E,t

) = ⇢(xT
E,t

✓⇤
E

)

where ⇢(x) =

1
1+e

�x

. Based on this assumption, we have E[C
t

|x
t

] = ⇢(xT
C,t

✓⇤
C

)⇢(xT
E,t

✓⇤
E

).
As a result, the observed click feedback C

t

is a sample from this generative process. Define
f✓(x) := E[C|x,✓] = ⇢(xT

C

✓
C

)⇢(xT
E

✓
E

). The accumulated regret of a policy ⇡ up to time T is
formally defined as,

Regret(T,⇡,✓⇤
) =

T

X

t=1

max

a2A
t

f✓⇤
(x

a

)� f✓⇤
(x

a

t

)

where x

a

t

:= (x

a

t

C

,xa

t

E

) is the context vector of the arm a
t

2 A
t

selected by the policy ⇡ at time t
based on the history H

t

:= {(A
i

,x
i

, C
i

)}t�1
i=1 . The Bayesian regret is defined by E

⇥

Regret(T,⇡, ✓⇤)
⇤

,
where the expectation is taken with respect to the prior distribution over ✓⇤, and it can be written as,

BayesRegret(T,⇡) =
T

X

t=1

E
⇥

max

a2A
t

f✓⇤
(x

a

)� f✓⇤
(x

a

t

)

⇤

In our online learning setting, the objective is to find the policy ⇡ that minimizes the accumulated
regret over T.

4 Algorithm

The learner needs to estimate the bandit parameters ✓⇤
C

and ✓⇤
E

based on its interactively obtained
click feedback {x

i

, C
i

}t
i=1 over time. Ideally, this estimation can be obtained by maximizing the data

likelihood with respect to the bandit model parameters. However, the inclusion of examination as a
latent variable in our bandit learning setting poses serious challenges to both parameter estimation
and arm selection. Neither conventional least square estimator nor maximum likelihood estimator can
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be easily obtained, let alone computational efficiency, due to the non-convexity of the corresponding
optimization problem. To make things even worse, the two popular bandit learning paradigms, upper
confidence bound principle [1] and Thompson sampling [3], both demand an accurate estimation
of bandit parameters and their uncertainty. In this section, we present an efficient new solution to
tackle these two challenges, which makes use of variational Bayesian inference technique to learn
parameters approximately on the fly, as well as to bridge parameter estimation and arm selection
policy design.

4.1 Variational Bayesian for parameter estimation

To complete the generative process defined in Section 3, we further assume ✓
C

and ✓
E

follow
Gaussian distribution N(

ˆ✓
C

,⌃
C

) and N(

ˆ✓
E

,⌃
E

) respectively. We are interested in developing
a closed form approximation to their posteriors, when a newly obtained observation (x

C

,x
E

, C)

becomes available. By applying Bayes’ rule in the log space, we have,

logP(✓
C

,✓
E

|x
C

,x
E

, C)

= logP(C|✓
C

,✓
E

,x
C

,x
E

) + logP(✓
C

,✓
E

) + log const

=C log ⇢(xT
C

✓
C

)⇢(xT
E

✓
E

) + (1� C) log

�

1� ⇢(xT
C

✓
C

)⇢(xT
E

✓
E

)

�

� 1

2

(✓
C

� ˆ✓
C

)

T
⌃

�1
C

(✓
C

� ˆ✓
C

)� 1

2

(✓
E

� ˆ✓
E

)

T
⌃

�1
E

(✓
E

� ˆ✓
E

) + log const

The key idea is to develop a variational lower bound in the quadratic form of ✓
C

and ✓
E

for the log-
likelihood function. Because of the convexity of log ⇢(x)� x

2 with respect to x2 (See Appendix B.1)
and the Jensen’s inequality for log x (See Appendix B.2), a lower bound of the required form is
achievable. When C = 1, by Eq (16) in Appendix B.3, we have,

l
C=1(xC

,x
E

,✓) := log

�

⇢(xT
C

✓
C

)⇢(xT
E

✓
E

)

� � g(xT
C

✓, ⇠
C

) + g(xT
E

✓, ⇠
E

) (1)

where g(x, ⇠) := x

2 � ⇠

2 + log ⇢(⇠) � �(⇠)(x2 � ⇠2), �(⇠) = tanh ⇠

2
4⇠ , x, ⇠ 2 R. More specifically,

g(x, ⇠) is a polynomial of degree 2 with respect to x. When C = 0, by Eq (17) in Appendix B.3, we
have,

l
C=0(xC

,x
E

,✓) := log

�

1� ⇢(xT
C

✓
C

)⇢(xT
E

✓
E

)

�

(2)

� H(q) + qg(�x

T
C

✓, ⇠
C

) + qg(xT
E

✓, ⇠
E,1) + (1� q)g(�x

T
E

✓, ⇠
E,2)

where H(q) := �q log q � (1 � q) log(1 � q). Once the lower bound in the quadratic form is
established, we can use a Gaussian distribution to approximate our target posterior, whose mean and
covariance matrix are determined by the following equations,

⌃

�1
C,post = ⌃

�1
C

+ 2q1�C�(⇠
C

)x

C

x

T
C

(3)

ˆ✓
C,post = ⌃

C,post(⌃
�1
C

ˆ✓
C

+

1

2

(�q)1�C

x

C

) (4)

⌃

�1
E,post = ⌃

�1
E

+ 2�(⇠
E

)x

E

x

T
E

(5)

ˆ✓
E,post = ⌃

E,post(⌃
�1
E

ˆ✓
E

+

1

2

(2q � 1)

1�C

x

E

) (6)

where the subscript “post” denotes the parameters in the Gaussian distributions that approximate the
desired posteriors. Consecutive observations can be incorporated into the approximated posteriors
sequentially. There is one thing left to decide, i.e., the choice of variational parameters (⇠

C

, ⇠
E

, q). A
typical criterion is to choose the values such that the likelihood on the observations is maximized.
Similar to the choice made by [12], we choose the closed form update formulas of those variational
parameters as,

⇠
C

=

q

E✓
C

[x

T
C

✓
C

]

2

⇠
E

=

q

E✓
E

[x

T
E

✓
E

]

2

q =

exp (g(xT
C

✓
C

, ⇠
C

) + g(xT
E

✓
E

, ⇠
E

)� g(�x

T
E

✓
E

, ⇠
E

))

1 + exp (g(xT
C

✓
C

, ⇠
C

) + g(xT
E

✓
E

, ⇠
E

)� g(�x

T
E

✓
E

, ⇠
E

))
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Algorithm 1 Thompson sampling for E-C Bandit

1: Initiate ⌃

C

= �I,⌃
E

= �I, ˆ✓
C

= ✓
C,0, ˆ✓

E

= ✓
E,0.

2: for t = 0, 1, 2... do
3: Observe the available arm set A

t

⇢ A and its corresponding context set X
t

:= {(xa

C

,xa

E

) :

a 2 A
t

}.
4: Randomly sample ˜✓

C

⇠ N(

ˆ✓
C

,⌃
C

), ˜✓
E

⇠ N(

ˆ✓
E

,⌃
E

).
5: Select:

a
t

= argmax

a2A
t

⇢((xa

C

)

T
˜✓
C

)⇢((xa

E

)

T
˜✓
E

)

6: Play the selected arm a
t

and Observe the reward C
t

.
7: Update ⌃

C

, ˆ✓
C

,⌃
E

, ˆ✓
E

according to Eq (3) to Eq (6) respectively.
8: end for

where all the expectations are taken under the approximated posteriors. Empirically, we found the
iterative update of the approximated posterior and the variational parameters converge quite rapidly,
such that it usually only needs a few rounds of iterations to get a satisfactory local maximum in our
experiments.

4.2 Thompson sampling with approximated lower bound

Thompson sampling, also known as probability matching, is widely used in bandit learning to balance
exploration and exploitation, and it shows great empirical performance [6]. Thompson sampling
requires a distribution of the model parameters to sample from. In a standard Thompson sampling
[3], one is required to sample from the true posterior of model parameters. But as logistic regression
does not have a conjugate prior, the model defined in our problem does not have an exact posterior.
We decide to sample from the approximated posterior as derived in Eq (3) to Eq (6). Later we will
demonstrate this is a very tight posterior approximation. Once the sampling of ( ˜✓

C

, ˜✓
E

) is complete,
we can select the corresponding arm a

t

2 A
t

which maximizes ⇢(xT
C

˜✓
C

)⇢(xT
E

˜✓
E

). We name the
resulting bandit algorithm as examination-click bandit, or E-C Bandit in short, and summarize it in
Algorithm 1.

5 Regret Analysis

Recall our object is to find the policy that minimizes the Beyesian regret,

BayesRegret(T,⇡) =
T

X

t=1

E
⇥

max

a2A
t

f✓⇤
(x

a

)� f✓⇤
(x

a

t

)

⇤

where f✓(x) := E[C|x,✓] = ⇢(xT
C

✓
C

)⇢(xT
E

✓
E

). Our algorithm, which is based on a maximum
likelihood estimator, is equivalent to an estimator that minimizes a log-loss with binary random
variables. In this section, we will first bound the aggregate empirical discrepancy of the log-loss
estimator used in our model in Proposition 1. This prepares for the upper bound of the generic
Bayeisan regret under a log-loss estimator with Thompson sampling policy in Theorem 1. Based on
this generic Bayesian regret bound, we study the upper bound of Bayesian regret for our proposed
E-C Bandit. Due to space limit, we provide all the detailed proofs in the Appendix.

To further simplify our notations, we use f for f✓ , which is the reward function based the estimated
bandit parameter ✓, and f

k

for f✓(xa

k

), i.e., the reward for arm a
k

. We use f⇤ for f✓⇤ , which is the
reward function based on the ground-truth bandit parameter, and correspondingly f⇤

k

for f✓⇤
(x

a

k

).
We assume that f⇤ lies in a known function space F , where any f 2 F is a function mapping from
the arm set A to the range (0, 1). Define the log-loss estimator by ˆfLOGLOSS

t

2 argmin

f2F L2,t(f)

where L2,t(f) is the aggregate log-loss written as
P

t�1
k=1 lk(f) where l

k

(f) = ��

C
k

log f
k

+ (1�
C

k

) log(1� f
k

)

�

. We have the following proposition,
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Proposition 1. Denote the aggregate empirical discrepancy
P

t

k=1(fk � f⇤
k

)

2 by kf � f⇤k2
E,t

. For

all � > 0 and ↵ > 0, if F
t

=

n

f 2 F :

�

�

�

f � ˆfLOGLOSS
t

�

�

�

E,t

 p

�⇤
t

(F , �,↵)
o

for all t 2 N ,

P
�

f⇤ 2 \1
t=1Ft

�

> 1� �, (7)

where �⇤
t

(F , �,↵) is an appropriately constructed confidence parameter. In particular, it is defined as
�⇤
t

(F , �,↵) := 2
�0

log(N(F ,↵, k·k1)/�)+2↵⌘
t

, where N(F ,↵, k·k1) denotes the alpha-covering
number of F , �0 =

3
( 1
m

f

+ 1
1�M

f

)2
and ⌘

t

=

�

4M
f

+

1
min{m

f

,1�M

f

}
�

t, in which m
f

,M
f

2 R are

upper and lower bounds of f such at 0 < m
f

 f  M
f

< 1 for any f 2 F .
Remark 1. The proof is provided in Appendix C. Here we discuss two important details re-
lated to our later proof about E-C Bandit’s regret. First, the precise optimization of ˆfLOGLOSS

t

2
argmin

f2F L2,t(f) could be hard in some instances of F . For example, when F is a set of
non-convex functions. Nevertheless, we can always resort to approximation methods to solve the
optimization problem as long as the approximation error can be bounded. Indeed, in our E-C Bandit,
we resort to variational inference to estimate ˆfLOGLOSS

t

on the fly and find it works quite well in
practice. Second, when f⇤ 62 F , this corresponds to the problem of model mis-specification. In
this situation, the regret bound could be very poor, as the real regret could be linear with respect to
time. To show this clearly in our case, in Appendix F we construct a situation in which the regret is
inevitably linear if one fails to model the examination condition in click feedback and simply treats
no click as negative feedback.

With Proposition 1, we have the following theorem which bounds the Bayesian regret of the Thompson
Sampling strategy under a log-loss estimator.
Theorem 1. For all T 2 N , ↵ > 0 and � < 1

2T , if ⇡TS denotes the policy derived from the log-loss
estimator and a Thompson sampling strategy along the time steps, then

BayesRegret(T,⇡TS

)  1 +

�

dim

A
E

(F , T�1
) + 1

�

C + 4

q

dim

A
E

(F , T�1
)�⇤

T

(F ,↵, �)T (8)

where C = sup

f2F{sup f}, dimA
E

(F , T�1
) is the eluder dimension (see Definition 3 in Russo and

Van Roy [24]) of F with respect to A.
Remark 2. We can choose C = 1 in our click feedback case since f 2 (0, 1). C is kept in the
theorem to show the same form compared to the Proposition 8 in Russo and Van Roy [24]. In fact,
the proof is almost the same once we have Proposition 1. Hence, we omit the proof in our paper.

Now we turn to provide an upper regret bound of our E-C Bandit, based on the above generic Bayeisan
regret analysis under a log-loss estimator. We add the following two assumptions which are standard
in the literature of contextual bandits.
Assumption 1. The optimal ✓⇤ lies in B

s

:= {✓ 2 Rd

: k✓k2  s}, and s is known as a prior.
Assumption 2. The norm of context vectors are bounded by x, i.e., (x

C

,x
E

) 2 B
x

, where B
x

:=

{x 2 Rd

: kxk2  x} and x is known as a prior.

Based on these two assumptions, it is straightforward to verify that ⇢(xT
C

✓
C

), ⇢(xT
E

✓
E

) and f✓(x)
are bounded. Let M

⇢

= max✓2B
s

,x2B
x

⇢(xT✓) and m
⇢

= min✓2B
s

,x2B
x

⇢(xT✓). Hence, 0 <
m

⇢

 M
⇢

< 1. Similarly, denote the maximum of f✓(x) by M
f

and the minimum by m
f

,
we have 0 < m

f

 M
f

< 1. Once the arm set is restricted to a finite cardinality, we have
dim

A
E

(F , T�1
)  |A| by Appendix C.1. in Russo and Van Roy [24]. Choosing the function class

as that in our E-C Bandit, i.e., F = {f : B
x

! R|f = ⇢(xT
C

✓
C

)⇢(xT
E

✓
E

),✓ 2 B
s

}, by Lemma 8
(See Appendix 8 for its proof), we have N(F ,↵, k·k1) = (�/↵)d where � = 2M

⇢

k
⇢

x (k
⇢

is the
Lipschitz constant of ⇢, see Lemma 4). Hence, choosing ↵ = 1/t2 and � = 1/t leads to

�⇤
t

(F , 1/t, 1/t2) =
2

�0
d log(�t3) +

1

t
(4M

f

+

1

m
f

). (9)

Therefore, the upper bound of Bayesian regret of our proposed E-C Bandit takes the following form,

BayesRegret(T,⇡TS

) = O(|A|+
p

d|A|T log T ). (10)

When T � |A| and T � d, which is a typical case in practice, it becomes O(

p
T log T ).
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6 Experiment

We perform empirical evaluations in simulation and on the online student click logs collected from
our MOOC platform to verify the effectiveness of our proposed algorithm. In particular, we compare
with those that fail to model the examination condition and directly use click as feedback.

6.1 Algorithms for comparison

We list the models used for empirical comparisons below, and explain how we adjust them in our
evaluations.

Logistic Bandit. This model has been extensively used for online advertisement CTR optimization.
In [6, 21], the authors model user clicks by a regularized logistic regression model over observed
context features and make decisions by applying Thompson sampling over the learnt model. In
particular, no click is treated as negative feedback. Following their setting in [6], we used the Laplace
approximation and Gaussian prior presented in to update the model parameters on the fly. We also
want to highlight that despite mountains of works focusing on generalized linear bandits, most of
them are not truly online algorithms, because the estimation of their parameters at each iteration has
to involve all historical observations iteratively. This incurs a space complexity at least O(T ) and
time complexity at least O(T 2

) (e.g., Filippi et al. [9] requires exact optimum of logistic regression
on all historical observations at each round).

hLinUCB. This is an algorithm proposed by Wang et al. [25] for bandit learning with latent variables.
It is related to our model in a sense that both models estimate hidden features. In particular, hLinUCB
extends linear contextual bandit by inclusion of hidden features and operates under a UCB-like
strategy. However, it still treats click as direct feedback, but aims at learning more expressive features
to describe the observed clicks.

E-C Bandit. This is the algorithm we present in Algorithm 1. We should note that in the experiments
on real-world data, the manual separation of examination feature x

E

and click feature x

C

in the
context vector x offers a principled approach to incorporate one’s domain knowledge about what
affects user examination and what affects user result relevance. We explain in detail what features
are chosen for which component in Appendix G. Thanks to the tight approximation achieved by
Bayesian variational inference presented in Section 4, truly online model update is feasible in this
algorithm. This provides both computational and storage efficiency.

6.2 Experiments on simulations

First we demonstrate the effectiveness of our algorithm by experiment with simulated data. The
experiment is performed as follows. The context vector’s dimension d

C

and d
E

are set to 5, and
thus d = d

C

+ d
E

= 10. We set |A| = 100, each of which is associated with a unique context
vector (x

C

,x
E

). The ground-truth parameter (✓⇤
C

,✓⇤
E

) and the specific value of (x
C

,x
E

) are all
randomly sampled from the unit ball B = {x 2 Rd

: kxk2  1}. Since (✓⇤
C

,✓⇤
E

) and (x

C

,x
E

)

are both sampled from B, m
f

and M
f

can be obtained by taking the minimum and maximum of
⇢(xT

C

✓
C

)⇢(xT
E

✓
E

) on B, respectively, i.e., m
f

=

1
(1+e)2 and M

f

=

1
(1+e

�1)2 .

At each time t, an arm set ˜A
t

is randomly sampled from A such that | ˜A
t

| = 10, i.e., each time
we offer 10 randomly selected arms for the algorithm to choose from. An algorithm selects an
arm from A

t

and observes the corresponding reward Calg
t

generated by the Bernoulli distribution
B(⇢(xT

C,t

✓⇤
C

)⇢(xT
E,t

✓⇤
E

)). The regret of this algorithm at time t is defined by its received click reward,
i.e., regret(t) = C

a

⇤
t

� C
a

t

, where a⇤
t

is the optimum arm to be chosen based on the ground-truth
bandit parameters (✓⇤

C

,✓⇤
E

).

We repeat the experiment 100 times using the same simulation setting, each containing 10,000
iterations. The average cumulative regret over 100 runs and the corresponding standard deviation
(plotted per thousand iterations) are illustrated in Figure 1. One can clearly notice that the Logistic
Bandit suffers from a linear regret with respect to time t, as it mistakenly treats no click as negative
feedback. Our E-C Bandit achieves a fast converging sub-linear regret. The result that hLinUCB
performs the worst is expected, since it assumes a linear relation between click and context feature
vectors. We further investigate how the aggregate empirical discrepancy between E-C bandit and
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Figure 1: Comparison of cumulative regret over
100 runs of simulation.

Figure 2: Comparison of discrepancy bound pro-
vided by Proposition 1.

Logistic Bandit increases with respect to time. Figure 2 illustrates that the aggregate empirical
discrepancy of E-C Bandit is well bounded by the upper bound provided by Proposition 1, while
the Logistic Bandit’s aggregate empirical discrepancy increases linearly. This directly explains their
accumulative regret in this experiment comparison.

6.3 Experiments on MOOC video watching data

The MOOC data we used for evaluation is collected from a single course in a 4-month period. The
course has 503 lecture videos in total. About 500 high-quality quiz-like questions have been manually
crafted and each video is assigned with a subset of them based on human-judged relatedness. We
selected 21 videos, whose accumulated watching time are ranked in the first 21 places, for this
evaluation. Over the selected videos, on average a video is assigned with 5.5 questions, each
of which is associated with 6 possible displaying positions within the video, leading to a total
of 33 arms in average (as each question can be placed in all positions). The data set with our
manually crafted features and our model implementation have been made publicially available here:
https://github.com/qy7171/ec_bandit.

We picked one video as an example to analyze students’ click behavior. 9 arms are picked and
projected by a random Gaussian matrix to a two-dimension plane in Figure 3. Thus, their relative
distance are kept. The number in the parenthesis indicates the empirical CTR of the corresponding
arm. It can be clearly seen that while arm c and arm f have the same empirical CTR, the arms
between them, such as arm a and d, have lower CTRs. Logistic Bandit is never able to capture this
non-monotonicity relation, since its reward prediction increases monotonically with respect to a linear
predictor. We construct a more general case in Appendix F to illustrate the scenario that failing to
model examination condition would lead to a linear regret. Mapping the illustration back to the MOOC
data set, arm a and arm f are two different questions displayed at the same position in the video, while
arm a and arm c are the same question displayed at different positions. This phenomenon strongly
suggests bias in users’ implicit feedback, which again justifies our decomposition of examination and
relevance in click feedback.

We followed [21] to develop our online data collection policy in our MOOC platform so as to prepare
our offline evaluation data set. In particular, any related questions with respect to a video will have an
equal probability to be selected and displayed at all positions in this video. We name this policy as
Similarity. We create an instance of a bandit model for each video to learn its own optimal question
placing policy. See Appendix G for detailed explanations of our examination feature choice. We
also added a new baseline here, i.e., PBMUCB[18], which assumes a position-based examination
probability in any ranking result. To adjust it to our setting, we assumed that the examination
probability of any question chosen in a video is determined by and only by its position. Therefore,
the key difference between our model and PBMUCB is that ours utilizes the available contextual
information to estimate the examination probability, while PBMUCB is context-free. Yet, another
important difference is that PBMUCB assumes the probability of examination at different position is
known, and is estimated from offline data.
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Figure 3: 9 arms’ feature vectors projected
onto a two-dimension plane, such that the rel-
ative distances between points are kept. The
number in the parenthesis is the arm’s empiri-
cal CTR.

Figure 4: Performance comparison on MOOC
videos’ data of different bandit algorithms.

Li et al. [21] proposed a method to calculate a near-unbiased estimate of CTR of any bandit algorithm
based on the collected history data, so that offline evaluation and performance comparison are
possible. We take their offline evaluation protocol here and report the estimated CTR in Figure 4,
which is averaged over 100 runs. To avoid disclosing any proprietary information about the platform,
all algorithms’ CTRs are normalized by that from the Similarity policy. As shown in the figure,
independently estimating E-C Bandits across videos achieves an average 40.6% increase in CTR over
the Similarity baseline. Meanwhile, E-C Bandit consistently outperforms the other three baseline
bandits, i.e., hLinUCB, Logistic Bandit and PBMUCB. The improvement of our model compared to
Logistic Bandit clearly suggests the necessity of modeling examination condition in user clicks for
improving the online recommendation performance, and the improvement against PBMUCB provides
strong evidence of the importance of modelling examination with available contextual information.
In addition, the standard of error of E-C Bandit, hLinUCB, Logistic Bandit and PBMUCB’s relative
CTR performance among 100 trials are 0.032, 0.031, 0.030, 0.041, respectively. Therefore, the
variance of our offline evaluation is small and the improvement from our solution to the baselines are
statistically significant.

7 Conclusion

Motivated by the examination hypothesis in user click modeling, in this paper we developed E-C
Bandit, which differentiates result examination and content relevance in user clicks and actively
learns from such implicit feedback. We developed an efficient and effective learning algorithm
based on variational inference and demonstrated its effectiveness on both simulated and real-world
datasets. We proved that despite the complexity of underlying reward generation assumption and the
resulting parameter estimation procedure, the proposed learning algorithm enjoys a sub-linear regret
bound. Currently we only studied click feedback on single items; it is important for us to study it in a
more general setting, e.g., a list of ranked items, where sequential result examination and relevance
judgment introduce richer inter-dependency. In addition, our current regret analysis does not account
for the additional discrepancy introduced by the variational inference. Abeille et al. [2] suggests that
an exact posterior is not a necessary condition for a Thompson sampling policy to be optimal. It is
important to study a tighter upper regret bound under our approximated posterior in general.
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